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Antihydrogen production and accuracy of the equivalent photon approximation
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The production of antihydrogen in flight inp̄-nucleus collisions is calculated theoretically in the plane wave
Born approximation~which is equivalent to the straight line semiclassical approximation!. Antihydrogen has

been produced in this way at CERN LEAR and is presently studied at Fermilab at variousp̄ energies. Dirac
wave functions for the leptons are used, taking first order (Za) corrections into account. Analytical results are
obtained for differential cross sections. Total cross sections are obtained by numerical integration. The depen-
dence on the transverse momentum transfer is studied and the accuracy of the equivalent photon approximation
and a recent variant by Munger, Brodsky, and Schmidt is discussed as a function of beam energy.
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I. INTRODUCTION

Antihydrogen in flight was first produced and detected
the CERN Low Energy Antiproton Ring~LEAR! @1# using
the process

p̄1Z→H̄1e21Z, ~1.1!

whereZ554 (Xe). This process was first suggested by M
ngeret al. @2#,where also calculations of the cross section
the antihydrogen production were performed in the equi
lent photon approximation~EPA!. A similar pair production
process withe capture will occur with a large cross section
relativistic heavy ion colliders@3#. This is important becaus
it leads to a beam loss. Theoretical calculations were don
many groups@4–6#. They were mainly interested in the lim
of high energies. The applicability of the EPA will becom
more and more questionable for lower energies, where thH̄
production experiments were done@1,7#. The dominant
graph is shown in Fig. 1. It was shown in Ref.@7# that
bremsstrahlung pair production with capture can be sa
neglected. In Eq.~5! of Ref. @7# it was stated that the cros
section for antihydrogen production is of the order of (2
31023) Z2 nb, for low energies. Since in the present pap
the uncertainties due to the application of the equivalent p
ton method for low energies are now removed, this statem
can now be considered as superseded.

By crossing symmetry the processg1 p̄→e21H̄ @2# is
related to the photoeffectg1H→p1e2 @4# which is treated
in the literature~see, e.g., Ref.@9#!. These calculations pro
vide approximate theoretical values for theH̄ production
cross section. This is also relevant for the ongoing exp
ments at Fermilab@8#, where also the energy dependence
the process will be investigated and possible future exp
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ments with fastH̄ beams, such as Lamb shift measureme
@2,8#. On the other hand, we have to investigate the accur
and limitations of the EPA. It is the purpose of this paper
carry out an accurate calculation of the cross section for
~1.1!. Analytical expressions are given.

II. PRODUCTION OF H̄ WITH ANTIPROTON BEAMS

In the semiclassical approach we assume that the rela
istic antiproton moves along a straight line. In its frame
reference the time-dependent electromagnetic fields of
target nucleus is given by

A~r ,t !5vf~r ,t !, where f~r ,t !5
gZTe

uR2R8~ t !u
,

~2.1!

where r5(x,y,z), R5(x,y,gz), R85(bx ,by ,gvt), v
is the relative velocity,g5(12v2)21/2 , andZTe is the tar-
get charge. We can writef in the integral representation

f~r ,t !5
gZTe

2p2 E d3q
eiq–[R2R8~ t !]

q2
. ~2.2!

FIG. 1. Diagram forH̄ in collisions of p̄ with a nuclear target.
© 1998 The American Physical Society05-1
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In first-order perturbation theory, theH̄-production ampli-
tude for a collision with impact parameterb5Abx

21by
2 is

given in terms of the transition density and currentr(r ) and
j „r …, respectively, by

a1st5
1

i E dt eivtE d3r @r~r !f~r ,t !2 j „r …–A~r ,t !#

5
gZTe

i2p2E dt eivtE d3qE d3r
eiq–[R2R8~ t !]

q2

3@r~r !2v–j ~r !#, ~2.3!

wherev5«1m is the sum of the electron« and the positron
energym ~the binding energy ofH̄ can be neglected!. In the
last step we used Eqs.~2.1! and~2.2!. The integral over time
yields the factor (2p/gv)d(qz2v/gv). Furthermore, using
the continuity equation,¹• j52 ivr, we get

a1st5
ZTe

ipvE d2qt

eiqt–b

Q22v2E d3reiQ–rS j z~r !

vg2
1

qt• j t

v D ,

~2.4!

where the indexz(t) denotes the components along~trans-
verse to! the beam direction, andQ[(qt ,v/v). Note that
Q22v25qt

21(v/gv)2. The transition current is given in

terms of the Dirac matricesaW , and the lepton wave function
j (r )5e@C (2)#* aW C (1). Thus we can rewrite theH̄ produc-
tion as

a1st5
ZTe

ipvE d2qt

eiqt–b

qt
21~v/gv !2

F~Q!, ~2.5!

where

F~Q!5eE d3r @C~2 !~r !#* eiQ–rS az

vg2
1

qt•aW t

v D C~1 !~r !

5 ieK–E d3r @C~2 !~r !#* eiQ–rg0gW C~1 !~r !. ~2.6!

In the last equality we used the definitionK[(K t ,Kz)
5(qt /v,1/vg2) and (g0,gW ) are the Dirac matrices, wher
we follow the procedure of Ref.@9#. The total cross section i
obtained by integrating the square of the expression~2.5!
over all possible impact parameters:

s5 (
spins

E ua1stu2d2b54S ZTe

v D 2

(
spins

E
0

`

d2qt

uF~Q!u2

~Q22v2!2
.

~2.7!

The same result can be obtained in the plane-wave B
approximation, as shown in Appendix C.

Using the positron and the electron wave functions
given by Eqs.~A4! of Appendix A and Eq.~B1! of the Ap-
pendix B, we get
03400
rn

s

F~Q!5 ieE d3r $ūe2 ip–r1C̄8%~gW –K !eiQ–r

3H 11
i

2m
g0gW –¹W J vCnonr~r !

. ieE d3r H ūei ~Q2p…–r~gW –K !

3F S 11
i

2m
g0gW –¹W D GvCnonr~r !

1C̄8eiQ–r~gW –K !vCnonr~r !J , ~2.8!

where in the last equation we neglected terms of high
order inZa.

Integrating by parts,

F~Q!5 ieE d3r H ūei ~Q2p…–r~gW –K !

3F S 11
1

2m
g0gW –¹W D vCnonr~r !G

1C̄8eiQ–r~gW –K !vCnonr~r !J
.

ie

Ap
a0

23/2E d3r H ū~gW –K !F S 11
1

2m
g0gW –„Q2p…D

3v~e2r /a0!Q2pG1C̄Q8 ~gW –K !vJ . ~2.9!

Since the corrections are in first order inZa, we have
replacedCnonr(r ) by its constant value 1/Apa0

3/2 in the last
term of Eq.~2.9!. If we would do the same in the first term
would be identically zero~except forQ5p). This is the rea-
son why we need to keep the corrections in the wave fu
tions to first order inZa; for «@m these corrections yield a
term of the same order as the plane-wave to the total c
section, as we shall see later. We rewrite Eq.~2.9! as

F~Q!54ieApa0
25/2 ūAv

~Q2p!2
, ~2.10!

where

A5a~gW –K !1~gW –K !g0~gW –b!1~gW –d!g0~gW –K !,
~2.11!

with

a5
1

~Q2p!2
2

«

Q22p2
, b5

Q2p

2m~Q2p!2
,

and
5-2
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c52
Q2p

2m~Q22p2!
. ~2.12!

Inserting Eq.~2.10! into Eq.~2.7!, the cross section become

s5
16e2

p2a0
5S ZTe

v D 2E d3p

~2p!3E0

` d2qt

~Q22v2!2

1

~Q2p!4

3 (
spins

uūAvu2. ~2.13!

The sum runs over the spins of the positron and the e
tron. Usingp2dp5«pd«, and standard trace techniques w
get

ds

d«dV
5

32e2p

p2a0
5 S ZTe

v D 2E
0

` d2qt

~Q22v2!2

1

~Q2p!4
$~«21!@~b

2d!2K214~K–b!~K–d!#1~«11!a2K2

12a@2~p–K !~b–K !2p•~b2d!K2#%. ~2.14!

Using the definition ofK , it is illustrative to separate the
integrand of the above equation in terms of longitudinal a
transverse components:

ds

d«dV
5

1

pvS ZTe

v D 2E
0

`

d~qt
2!

qt
2

~Q22v2!2Fdsg* T

dV
~Q,v!

1
dsg* L

dV
~Q,v!1

dsg* LT

dV
~Q,v!G , ~2.15!

where

dsg* T

dV
~Q,v!5

32e2p

a0
5v

1~Q2p!4H ~«21!F ~b2d!2

2
~qt2p–êt!p–êt

~Q2p!2~Q22p2!
G1~«11!a2

12aF ~qt2p–êt!p–êt

~Q2p!2
2p•~b2d!G J ,

~2.16!

dsg* L

dV
~Q,v!5

32e2pv

a0
5qt

2 S 1

g2v
D 2

1

~Q2p!4H ~«21!F ~b2d!2

2
~v/v2pz!

2

~Q2p!2~Q22p2!
G1~«11!a2

12aF pz~v/v2pz!

~Q2p!2
2p•~b2d!G J , ~2.17!
03400
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dsg* LT

dV
~Q,v!5

64e2p

a0
5qtg

2v

~v/v2pz!

~Q2p!6 H aF ~p–êt!

1pz

~qt2p–êt!

~v/v2pz!
G2~«21!

~qt2p–êt!

~Q22p2!
J .

~2.18!

In these equationsê5q̂t /qt is a unit vector in the trans
verse direction. The cross sectionssg* T , sg* L , and
sg* LT are interpreted as the cross sections forH̄ by virtual
transverse and longitudinal photons and a interference te
respectively. Note that the transverse and longitudinal dir
tions arewith respect to the beam axis, not with respect to
the photon momentum, as is usually meant by this te
Only for g@1 does this definition agrees with the definitio
of transverse and longitudinal virtual photons. However, t
separation is very useful, as we will see next.

III. PRODUCTION OF H̄ BY REAL PHOTONS

The cross section for production ofH̄ by real photons is
given by @9#

dsg52puVf i u2d~v2«21!
d3p

~2p!3
, ~3.1!

where

Vf i52eA4p

v E d3r @C~2 !~r !#* ei k–r~ ê•aW !C~1 !~r !,

~3.2!

with k5 ẑv/c, where ẑ is the unit vector along the photo
incident direction, andê is photon polarization unit vector.

Using the positron and the electron wave functions
given by Eqs.~A4! of Appendix A and Eq.~B1! of Appendix
B, and performing similar steps as in Sec. II, we get

Vf i52e
8pA2

a0
5/2v1/2

uBv

~k2p!2
, ~3.3!

where

B5ak~gW –kW !1~gW –kW !g0~gW –bk!1~gW –dk!g0~gW –kW !,
~3.4!

whereak , bk , and dk are the quantities defined in Eq
~2.12!, but with Q replaced bykW 5 ẑv/c. Inserting these re-
sults in Eq.~3.1! and summing over spins we get
5-3
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C. A. BERTULANI AND G. BAUR PHYSICAL REVIEW D 58 034005
dsg

dV
~v!5

32e2p

a0
5v

1

~k2p!4H ~«21!F ~bk2dk!2

2
~p–ê!2

~k2p!2~k22p2!
G1~«11!ak

212akF ~p–ê!2

~k2p!2

2p•~bk2dk!G J . ~3.5!

We notice that the above equation can also be obta
from Eqs.~2.15!–~2.18! in the limit qt→0 andv→c. In this
limit sg* L→0, sg* LT→0, and sg* T becomes the cros
section for the productionH̄ by real photons.

Integrating Eq.~3.5! over the azimuthal angle we ge
~without any further approximations!

dsg

du
~v!52p

e2p3~«12!

a0
5v4

sin3u

~«2p cosu!4

3F«2p cosu2
2

v~«12!G . ~3.6!

In Fig. 2 we plot the cross section for the angular dis
bution of the electrons inH̄ production by real photons. W
observe that the higher the electron energy is, the more
ward peaked the distribution becomes. As we can imme
ately deduce from Eq.~3.6!, for «@1, the width of the peak
is given byD cosu.1. For «.1 the distribution is propor-
tional to sin2u.

Integrating Eq.~3.6! over u we get

s~g1 p̄→e21H̄ !5
4pe2

a0
5

p

v4F«21
2

3
«1

4

3

2
«12

p
ln~«1p!G . ~3.7!

FIG. 2. Angular distribution of the electrons inH̄ production by
real photons for several electron energies.
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It is instructive to derive this cross section by a differe
method. In some textbooks~see, e.g., Refs.@10,9#! one can
find a calculation of the cross sections for the annihilation
a positron with an electron in theK shell of a nucleus. From
charge conjugation invariance~which is valid for QED!, this
cross section is the same as the cross section for the an
lation of an electron with a positron in theK shell of anH̄.
The cross section is@10,11#

s~e21H̄→g1 p̄!5
2pe2

a0
5

1

pv2F«21
2

3
«1

4

3

2
«12

p
ln~«1p!G . ~3.8!

Using the detailed balance theorem, the above equa
yields exactly the same cross section ofH̄ production by real
photons as given by Eq.~3.7!. The reason is that the calcu
lation leading to Eq.~3.7!, originally due to Sauter@12#, used
the same corrections toZa order for the electron and pos
tron wave functions, as we did to obtain Eq.~3.1! ~see Ap-
pendixes A and B!.

The relevance of these corrections can be better un
stood by using the high-energy limit,«@1. From Eq.~3.7!
we get

s~g1 p̄→e21H̄ !5
4pe2

a0
5

1

«
. ~3.9!

If in our calculation, we had used plane waves for the el
tron and the hydrogenic wave function for the positron, wi
out the corrections to orderZa, the cross section for the
production ofH̄ by real photons would be given by

Fdsg

du
~v!G

PWA

54p
e2p

a0
5v4

sin u

~«2p cosu!4
, ~3.10!

the integral of which is

@sg#PWA5
8pe2

a0
5

p

v4
~3«21p2!. ~3.11!

In the high-energy limit

@sg#PWA5
32pe2

3a0
5

1

«
. ~3.12!

We see that the difference between this result and tha
Eq. ~3.9! is a factor 8/3. This is just the reason why th
corrections of orderZa have to be included in the calcula
tion of H̄. They yield terms to the matrix elements for ph
toproduction ofH̄ of the same order as the terms of lowe
order. The origin of the difference between the two resu
are the small distances which enter in the calculation of
matrix elements of Eq.~2.9!. The corrections are essential
account for their effects properly. We note that these corr
5-4
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tions are enough to account for a good description ofH̄

production. The connection between the production ofH̄ by
real photons and by virtual ones will prove to be very use
as we shall see in the next section.

IV. PRODUCTION OF H̄ BY VIRTUAL PHOTONS

As we saw in last section, the production ofH̄ in a colli-
sion of p̄ with nuclear targets is directly related to the pr
duction cross section by real photons in the limitqt→0 and
v→c. It is important to determine at which values ofqt and
g this condition applies. In Figs. 3 and 4 we plot the produ
tion cross sections by longitudinal and transverse virt
photonssg* T , sg* L , respectively. These are the integrals
Eqs. ~2.16! and ~2.17!, which are performed numerically
The integral of the interference termsg* LT , Eq. ~2.18!, is
very small and is not shown. In Fig. 3 the cross sections
calculated for«52 andg53, and in Fig. 4 forg510 and
«52. We observe that for lowg ’s the cross sectionsg* L is
as important assg* T , while for largeg ’s the cross section

FIG. 3. Production cross sections by longitudinal and transve
virtual photonssg* T , sg* L , respectively. The cross sections a
calculated for«52 andg53.

FIG. 4. Same as in Fig. 3, but forg510 and«52.
03400
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sg* T dominates. For largeg ’s the cross sectionsg* L is only
relevant atqt.0. But this region contributes little to the tota
cross section, which is given by

s5
1

pvS ZTe

v D 2E
1

`

d«E
0

`

d~qt
2!

qt
2

~Q22v2!2
@sg* T~Q,v!

1sg* L~Q,v!1sg* L~Q,v!#, ~4.1!

since the first term inside the integral suppressesqt.0 val-
ues. This can also be seen by calculating the total cross
tion for H̄ production as a function ofg. This is shown in
Fig. 5 where the solid curve shows the cross section as g
by Eq. ~4.1!, and the dashed line is the cross section w
only the inclusion ofsg* T . We see that forg of the order of
8, or larger, the cross section is dominated by the transv
virtual photon component. Moreover we also observe t
the cross section for largeg ’s disagree with the equivalen
photon approximation~EPA! used in Ref.@2# to calculate the
cross section for the production ofH̄. It is thus convenient to
study under what circumstances the equivalent photon
proximation is reliable.

It might appear strange that the longitudinal part of t
cross section is relevant until such large values ofg. It is
thus reasonable to check this result with a more schem
calculation. This can be achieved by using plane waves
the electron and hydrogenic waves for the positron, with
the correction terms to orderZa. In this case, we get

F~Q!54ieApa0
25/2ū~gW –K !v

~Q2p!2
, ~4.2!

which yields the cross section

e FIG. 5. H̄ production in a collision of an antiproton with
proton target, as a function ofg. The solid curve shows the cros
section as given by Eq.~4.1! and the dashed line is the cross secti
with only the inclusion ofsg* T . The dashed line is the result of th
approximation given by Eq.~5.3!.
5-5
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ds

d«dV
5

1

pvS ZTe

v D 2E
0

`

d~qt
2!

qt
2

~Q22v2!2

3Fdsg* T

dV
~Q,v!1

dsg* L

dV
~Q,v!G , ~4.3!

where the interference term is exactly zero, and

dsg* T

dV
~Q,v!5

32e2p

a0
5

1

~Q2p!8

and

dsg* L

dV
~Q,v!5

32e2pv2

a0
5qt

2 S 1

g2v
D 2

1

~Q2p!8
. ~4.4!

The integral overV in the expressions above can be do
analytically yielding

H sg* T~Q,v!

sg* L~Q,v!
J 5

128pe2p

3a0
5

~p213Q2!~3p21Q2!

~Q22p2!6

3H 1

v2/~qtg
2v !2J . ~4.5!

Using this result, the integral overqt
2 in Eq. ~4.3! can also be

performed analytically but resulting in too long expressio
to be transcribed here. In Fig. 6 we plot
2(dsL /d«)/(dsT /d«) obtained in this approximation, for«
51, 2, and 3, respectively, and as a function ofg. We ob-
serve indeed that even for relatively large values ofg ~e.g.,
g;5) the longitudinal part of the cross section is still su
stantially relevant for the calculation of the total cross s
tion.

FIG. 6. H̄ production in a collision of an antiproton with
proton target calculated using a plane wave function for the elec

and a hydrogenic wave function forH̄. The ratio (dsT /d«
2dsL /d«)/dsT /d« is shown as a function ofg and for «51, 2,
and 3, respectively. Equations~4.3!–~4.5! were used in the calcula
tion.
03400
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V. THE EQUIVALENT PHOTON APPROXIMATION

The equivalent photon approximation is a well know
method to obtain cross sections for virtual photon proces
in QED. It is described in several textbooks~see, e.g., Ref.
@9#!. It is valid for largeg ’s, in which case the cross sectio
is dominated by transverse photons, as with the produc
cross section ofH̄. In Fig. 7 we plot the virtual photon cros
sectionsg* T(Q,v) for «51,5, and 10, forg5100, and as a
function of qt . In this logarithmic plot it is evident that the
functionsg* T(Q,v) is approximately constant until a cuto
value qt

max at which it drops rapidly to zero. On the othe
hand, the function

n~g,Q!5
1

pS ZTe

v D 2 qt
2

@qt
21~v/gv !2#2

~5.1!

which we call by ‘‘equivalent photon number,’’ is strongl
peaked atqt.v/gv, which is very small forg@1. Thus it is
fair to write

ds

d«
5E

0

qt
max

d~qt
2!

1

v
n~g,Q!sg* T~qt50,v!

.
1

v
sg~v!E

0

qt
max

d~qt
2!n~g,Q!, ~5.2!

where in the last equality we have approximatedsg* T(qt
50,v).sg(v). This approximation is indeed valid forg
@1, as we can see from Fig. 8, where we plot the ra
between these two quantities for«51, 5, and 10, and as a
function of g. For g bigger than 10 the approximation i
quite good, and it is even better for the lower values of«.
Equation~5.2! is known as the ‘‘equivalent photon approx
mation.’’ The problem with the approximation is that th
integral in Eq.~5.2! diverges logarithmically. The approxi
mation is only valid if we include a cutoff parameterqt

max,
determined by the value ofqt at whichsg* T(Q,v) drops to
zero. A hint to obtain this parameter is to look at Fig. 7. W
see that the transverse virtual photon cross section drop

n

FIG. 7. Virtual photon cross sectionsg* T(Q,v) for «51, 5,
and 10, forg5100, and as a function ofqt .
5-6
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zero atqt.«. Another hint comes from Fig. 9, where w
plot the energy spectrum of the electronds/d« for g
53, 10, and 10, respectively, obtained from a numerical
tegration of Eq.~4.1!. We observe that the energy spectru
peaks at«.223, irrespective of the value ofg. We thus
conclude that an appropriate value of the cutoff paramete
qt

max52. Inserting this value in Eq.~5.2! we get

ds

d«
5

1

pS ZTe

v D 2 1

v
sg~v!F ln~4x11!

24
x

4x11G , where x5
g221

v2
. ~5.3!

In a later paper@14# the cutoff (qt
max)2542y2, with y

5v/gv was used, which can be considered as an impro
ment over the one used here for low values ofg. In this case
the bracketing in Eq.~5.3! is changed into ln(4/y2)2(1
2y2/4).

FIG. 8. Ratio betweensg* T(qt50,v) and sg(v) for «51, 5,
and 10, and as a function ofg.

FIG. 9. Energy spectrum of the electronds/d« for g53, 10,
and 10, respectively, obtained from a numerical integration of
~4.1!.
03400
-

is

e-

The dotted curve shown in Fig. 5 is the integral of E
~5.3! over v. We see that this approximation is very reaso
able, for largeg. It is only for the very extremely largeg ’s
that we obtains5(2.86 pb)ZT

2 ln g, where the number in-
side parenthesis comes from (2a/p)*2

`dv sg(v)/v
52.86 pb. Only atg;103 and larger does the approximatio
presented in Ref.@2# become close~in the range of 10%! to
the result obtained with the equation above.

Reference@1# contains the only published data on antih
drogen production. Unfortunately, this is not a high statist
experiment. In this paper, 11 (61) events were found with
an estimated integrated luminosity of 531033 cm22

(650%). One can translate this into a cross section o
6263 nb, with the estimates for statistical and systemati
errors, respectively. Our theoretical cross section iss
5(54)230.25 pb;0.7 nb, leading only to an agreeme
with the experiment for the very lower limit experiment
value.

VI. CONCLUSIONS

We have calculated the cross sections for the produc
of antihydrogen in collisions of antiprotons with heav
nuclear targets The cross section is well described either
semiclassical method or by the plane-wave Born approxim
tion. In fact, both approaches yield the same result for re
tivistic antiprotons. The cross section can be separated
longitudinal and transverse components, corresponding
the velocity of the incident particle. For high energies,g
@1, this corresponds to the usual meaning longitudinal a
transverse components of the photon. A very transparent
simple formulation is obtained using the lowest order corr
tions to the positron and electron wave functions. At
trarelativistic antiproton energies, the contribution of the lo
gitudinal virtual photons to the total cross section vanish
The remaining terms of the cross section can be factorize
terms of a virtual photon spectra and the cross section
duced by real photons. However, the factorization depe
on a cutoff parameter, which is not well defined. This lea
to differences up to a factor of 2 between our results a
those based on the equivalent photon approximation. Pro
tion of antiatoms with the electron at low energies, typica
«.2, is favored. The angular distribution of the electrons
forward peaked within a angular intervalDu.1/«.

The equivalent photon approximation is only of help as
qualitative guidance for low values ofg(g smaller than
about 10!. This is the case for the CERN/LEAR experime
(p51.94 GeV/c), to a lesser extent for the Fermilab expe
ment @8# where the beam momentum can vary from 3.45
8.8 GeV/c. The formulation presented here allows for a b
ter quantitative calculation of the production of antiatoms
these energies. The discrepancy to earlier calculations@13#
for small values ofg is at present not understood.
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APPENDIX A: POSITRON WAVE FUNCTION

Here we deduce a first order (Za) correction of the pos-
itron wave function, important in the calculation of theH̄
production cross section. To be general, we consider the
duction of a bound positron in a relativistic antinucleus, w
charge2Z, incident on a target nucleus with chargeZT .
Much of our calculation is based on arguments presente
Ref. @9# with connection to the photoelectric effect.

The Dirac equation for a positron in the field of the an
nucleus is

«C5@aW –~p1eA!2bm2ef#C. ~A1!

For A50,

@«2U1bm1 iaW –¹W #C50, ~A2!

whereU52ef52Ze2/r is the Coulomb field. The posi
tron will be most likely be produced at thes state of the
antinucleus. To lowest order the wave function is given
the nonrelativistic hydrogenic wave function

Cnonr~r !5
1

Ap
S 1

a0
D 3/2

e2r /a0, ~A3!

wherea051/(Ze2m).
To first order, a corrected wave function~to orderZe2) is

given by

C5vCnonr1C~1!, ~A4!

wherev denotes the positron spinor.
Applying the operator«2U2mb1 iaW –¹W to Eq.~A2! we

obtain

~¹21p222«U !C5~ iaW –¹W U2U2!C. ~A5!

Substituting Eq.~A4! into Eq. ~A5! and expanding,

~¹21p222«U !Cnonrv1~¹21p222«U !C~1!

5~ iaW –¹W U2U2!Cnonrv1~ iaW –¹W U2U2!C~1!.

~A6!

Since p25«21m2.22mu«su, C (1)}Ze2, and U
}Ze2, we get, to lowest order,

~¹21p222«U !Cnonr.~¹222mu«su22u«suU !Cnonr.0

and Eq.~A6! becomes

~¹222mu«su22mU!C~1!5~ iaW –¹W U !Cnonrv

or
03400
o-

in

y

S ¹2

2m
2u«su2

Ze2

r DC~1!52
iaW

2m
–S ¹W

Ze2

r DCnonrv.

~A7!

The nonrelativistic wave function obeys the equati
(¹2/2m2u«su1Ze2/r )Cnonr50, from which we deduce tha

S ¹2

2m
2u«su2

Ze2

r D¹W Cnonr52S ¹W
Ze2

r DCnonr. ~A8!

Thus, if C (1)5 i /(2m)vaW –¹W Cnonr, it will be the solution
of Eq. ~A7!. An approximate solution of Eq.~A1! is there-
fore

C~1 !5F11
iaW

2m
–¹W GvCnonr5F11

i

2m
g0gW –¹W GvCnonr.

~A9!

The relevant distances for the nonrelativistic wave fun
tion are r;1/(mZe2). The correction term should be goo
within these distances. But, for the ground state~or any s
state! it can be used for any value ofr , since the derivative of
the exponential function~A3! is always proportional toZe2.
Because of that, we can use the corrected wave functio
our calculation ofH̄ production where, as we see in Sec.
the small values ofr are essential in the computation of th
matrix elements.

APPENDIX B: ELECTRON WAVE FUNCTION

For the electron wave function we use a plane wave an
correction term to account for the distortion due to the an
nucleus charge. As in Appendix A, the correction term
considered to be proportional toZe2. The wave function is
then given by

C5ueip–r1C8. ~B1!

In Sec. II we show that only the Fourier transform ofC8
will enter the calculation. This Fourier transform can be d
duced directly from the Dirac equation for the electron in t
presence of a Coulomb field of an antinucleus:

~g0«1 igW –¹W 2m!C85
Ze2

r
g0ueip–r. ~B2!

Applying on both sides of this equation the operator (g0«

1 igW –¹W 1m) we get

~D1p2!C85Ze2~g0«1 igW –¹W 1m!~g0u!
eip–r

r
. ~B3!

Multiplying by e2 iq–r and integrating overd3r we get

~p22q2!Cq85Ze2@2g0«1 igW –„q2p…#~g0u!
4p

~q2p!2
,

~B4!
5-8
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where we have used the identity (g0«1 igW –¹W 2m)(g0u)
50. Thus,

Cq8[~Cq8!* g0524pZe2ū
2g0«1 igW –„q2p…

~q2p!2~q22p2!
. ~B5!

In Sec. II we use this equation to calculate the matrix e
ment for the production of antiatom.

APPENDIX C: PLANE-WAVE BORN APPROXIMATION

In the plane wave Born approximation the transition m
trix element is given by

Tf i5E d3r @r f i~r !f~r !2 j f i„r …–A~r !# ~C1!

where

H f~r !

A~r !
J 5H 1

vJ E d3r 8
eivur2r8u

ur2r 8u
^k f ur 8&^r 8uk i&, ~C2!

and ^kzr &5eik–r is a plane wave for the antiproton. Using

eivur2r8u

ur2r 8u
5

1

2p2E d3K
eiK–„r2r8…

K22v2
~C3!

andJf i5vr f i , we get
b
s/

03400
-

-

Tf i54pE d3r
eiQ–r

Q22v2
@r f i~r !2 j f i~r !•v#54pZe

F~Q!

Q22v2
,

~C4!

whereQ5k i2k f andF(Q) is given by Eq.~2.6!. The cross
section is given by

ds

dV
5S E

2p D 2

(
spins

E uTf i u2.

For relativistic antiproton energies

QL5ki2kf cosu.ki2kf.v/v, QT[qt5kf sin~u!

.Ev sin~u!⇒dV5d2qt /~Ev !2, ~C5!

so that

s54S ZTe

v D 2

(
spins

E d2qt

uF~Q!u2

~Q22v2!2
. ~C6!

Theqt integration ranges from 0 to a maximum valueEv,
whereE and v are the antiproton energy and velocity, r
spectively. This value is, however, much larger than the
evant energies entering the matrix elements inF(Q). Thus,
the expression above is the same as the one derived in
II, Eq. ~2.7!.
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